
 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 633-641 Hou Xuexian , Zhou Xinzhi , Lei Yinjie 

633 

 

An 3D face recognition approach based on facial curve analysis 

Xuexian Hou*, Xinzhi Zhou, Yinjie Lei 

School of Electronic Information, Sichuan University, Chengdu 610065, China 

Received 24 November 2014, www.cmnt.lv 

Abstract 

In this paper, we present a novel 3D face recognition approach based on the analysis of facial curves, which are extracted from the 

semi-rigid facial regions. Our approach excludes the facial region which is most affected by facial expressions (non-rigid region) 

resulting in a set of indexed open geodesic curves. A novel open curve analysis algorithm combining the geodesic and Euclidean 

distances is used to match the same level pairs of open geodesic curves of a probe and the gallery faces. In order to increase the accuracy 

of face recognition, a curve ranking and weighting algorithm is also developed to select, during a training phase, the most reliable 

curves and to assign different weights to the selected ones. During the testing phase, the selected reliable curves and their corresponding 

distances are weighted fused to perform face recognition. The proposed approach has been tested on the Face Recognition Grand 
Challenge (FRGC v2.0) dataset via a number of experiments and a superior recognition performance was achieved. 

Keywords: face recognition, facial curves, geodesic curves, FRGC v2.0 

 

1 Introduction 

 
2D face recognition has been an active research area in the 

past decades [1]. However, its recognition accuracy is 

adversely affected by pose and illumination variations, 

which makes it unsuitable for many practical applications. 

In order to overcome its inherent limitations and 

drawbacks, many researchers turned to 3D facial 

information, which revealed to have a greater potential to 

achieve a higher accuracy compared to just 2D [2]. 

In this work, we present a rigid 3D face recognition 

approach based on the matching of open facial curves. 

Based on our experimental results tested on the largest 

publicly available 3D face recognition dataset, Face 

Recognition Grand Challenge (FRGC v2.0), the proposed 

approach has shown to be effective for 3D face recognition 

under various facial expressions. In the literature, most of 

the related research is based on the analysis of closed facial 

curves [3-6]. The proposed approach uses open facial 

curves for the following two reasons. First, a facial surface 

comprises different expression-sensitive region (i.e. the 

mouth area is the most affected under facial expressions 

while the nose and eyes-forehead are the least affected). 

On that basis, and in order to eliminate the effect of facial 

expressions, we only use the upper region of the face 

(semi-rigid). This results in the extraction of open geodesic 

curves which are analyzed and matched to perform 3D face 

recognition. Second, according to the theory of 

Riemannian manifolds, the computation of the geodesic 

distance between open curves (used during the matching 

of the probe and gallery faces in our case) is much easier 

and time efficient compared to the distance between closed 

curves. 
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2 Related work and system overview 

 

2.1 RELATED WORK 

 
1) Facial curve analysis based approaches: This kind of 
approaches represent the 3D facial surfaces by a set of 
curves/strips which turns the task of matching 3D facial 
surfaces to the matching of 3D curves/strips. ter Haar et al. 
[7] introduced a 3D face matching framework based on 3D 
facial curves, which allowed profile and contour based 
face matching. A pair of corresponding curves was 
matched using point-to-point distance. Then a curve 
selection algorithm was applied to select subsets of the 
extracted facial curves in order to improve the 
effectiveness and efficiency of their face matching. In [6], 
Ballihi et al. Applied Riemannian geometry to define 
geodesic paths between nasal curve of different faces. The 
length of the geodesic path was then used as a similarity 
measure. The AdaBoost algorithm was used to enhance the 
authentication performance. They tested their approach on 
a subset of FRGC v2.0 dataset. Based on their previous 
work [8-9], Berritti et al. [10] proposed a 3D face 
recognition approach which represents a 3D face by a set 
of isogeodesic stripes. A pair of corresponding stripes was 
matched based on 3D Weighted Walkthroughs (3DWWs). 
Their experimental results on the FRGC v2.0 dataset was 
however not satisfactory. The major challenge of this kind 
of methods is to design an appropriate scheme to extract 
facial curves/stripes to represent the facial surfaces. 
Moreover, the selection of the most relevant facial 
curves/strips to improve the recognition efficiency and 
accuracy is another important concern. 
2) Rigid face recognition: Rigid face recognition is 

performed on the facial regions which are least affected by 

facial expressions. Both psychological findings and the 3D 

face recognition literature reported that the mouth area is 
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the most affected under facial expressions, while the nose 

and eyes-forehead areas are less affected. This kind of 

methods is computationally cheaper and easier to 

implement. Lei et al. [11] proposed a 3D face recognition 

approach based on the local low-level geometric features. 

A facial scan was first divided into three expression -

sensitive regions (non-rigid, semi-rigid and rigid), and 

only the semi-rigid and rigid regions were taken into 

consideration. Their experimental results showed that the 

3D face recognition accuracy was highly influenced by 

non-rigid facial region. In [12], Mian et al. proposed an 

approach which automatically segmented the 3D face into 

different expression-sensitive regions. Based on the semi-

rigid facial regions, a matching algorithm, based on 

Spherical Face Representation (SFR) and Scale-Invariant 

Feature Transform (SIFT), was combined with a modified 

ICP algorithm to achieve an efficient 3D face recognition. 

Chua et al. [13] proposed a 3D face recognition system 

based on the point signature features extracted from the 

rigid parts of the face. They tested their approach on a 

small dataset with only six individuals and a 100% 

recognition rate was reported. Chang et al. [14] reported a 

method named Adaptive Rigid Multiregion Selection 

(ARMS) for 3D face recognition. The nose area was 

considered as a rigid facial region due to its relative 

invariance to facial expressions. Three different 

overlapping regions were extracted from the rigid region 

(nose area), and their separate matching scores were 

combined using the product rule as a similarity measure 

between different faces. 
 
2.2 SYSTEM OVERVIEW 
 
Figure 1 illustrates the framework of the proposed 
approach. We briefly describe each block as follows: 

 
FIGURE 1 Block diagram of the proposed approach 

 

First, a facial scan pre-processing method is performed 

(Section 3.1), which can automatically perform face 

cropping and pose correction along with a fine registration 

between a gallery and a probe face. Then we horizontally 

partition the pre-processed 3D face into upper and lower 

regions, and we only take into account the upper region of 

the face. We further subdivide the upper region into upper-

left and upper-right sub-regions with the aim to overcome 

the potentially non-symmetrical facial problem caused by 

facial expressions (Section 3.2). Indexed open geodesic 

curves are collected from both the upper-left and upper-

right sub-regions respectively. They are defined by a 

collection of vertices extracted from a facial mesh with the 

same geodesic length from a fixed reference vertex (the 

nosetip is used in our case). Our face matching approach 

compares different facial shapes by comparing their 

corresponding curves from the upper-left and upper-right 

respectively and fusing the pair of their similarity scores. 

Then, a novel open curve analysis algorithm which fuses 

the geodesic and the Euclidean distances is used as a 

similarity score to compare a pair of open geodesic curves 

(Section 3.3). We also propose a curve ranking and 

weighting algorithm performed during a training phase to 

select the most relevant curves to extract during the test 

phase, and to assign different weights to the selected ones 

(Section 3.4). Finally, the curve distances produced by the 

selected curves are fused according to their ranking 

weights and used as a matching score between a gallery 

and a probe face (see Section 3.5).  
 
3 Proposed approach 
 
3.1 FACIAL SCAN PRE-PROCESSING 
 
The largest publicly available 3D face dataset, FRGC v2.0 

[15] is used to test our proposed approach. A 3D facial 

scan in such dataset is represented by a set of dense point-

clouds, most of which require pre-processing (as they 

contain holes, spikes and their poses are not necessarily 

frontally). An automatic pre-processing is employed 

which removes spikes, fills in the holes, uniformly samples 

the point clouds and aligns the faces along principal 

directions. Initially, the spikes are removed by reducing 

outlier vertices according to the statistical information of 

the neighboring vertices. Then a mean value filter is used 

to smooth the facial surface. The holes are filled-in by 

using a bi-cubic interpolation. The resulting pointclouds 

are uniformly sampled at a resolution of 1 mm onto a 

square grid to achieve a range image representation. The 
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nosetip is automatically detected from the range image 

using a training free nosetip detection algorithm which was 

modified from our previous work [16]. The range image is 

converted back to the pointcloud format and a sphere of 

radius mmr 80  is used to crop the face. The pose of the 

cropped face is aligned along automatically computed 

principal directions using the method proposed in [12]. 

Figure 2 shows some of the pre-processing results. 
 

  
 

   
 

FIGURE 2 Example of 3D facial scans before and after automatic 

cropping and pose correction. 

 

   
 

   
 

   
 

   
 

FIGURE 3 Face fine registration 

Next, we finely register the gallery scan with the probe 

scan and align their nosetip. As a result, even if the final 

nosetip of the two scans do not correspond to the actual 

nosetip locations, the two scans are superimposed resulting 

in the extraction of comparable open geodesic curves. We 

use two binary masks (see lst row of Figure 3) to crop the 

semi-rigid regions of a gallery and probe scan respectively 

(the larger one is used for gallery and the smaller one is 

used for the probe in order to avoid incorrect 

correspondences at the borders). Next we convert the 

cropped parts into pointclouds and apply the ICP algorithm 

to find the rigid transformation from the probe scan to the 

gallery scan. We then apply the calculated rigid 

transformation to the complete probe face. Finally, we use 

the nosetip location of the gallery scan to update the 

nosetip location of the probe scan. 

 

3.2 OPEN CURVE BASED FACIAL 

REPRESENTATION 

 
We horizontally partition a facial surface into two regions, 
i.e. the lower and an upper (non-rigid and semi-rigid), with 
respect to the location of the detected nosetip. We however 
only take into account the upper region from which we 
extract a set of indexed open geodesic curves. An 
appropriate choice of the interval between the curves and 
the number of curves can provide distinctive features of 
the facial surface. In our case, a step interval of 2mm 
between open geodesic curves is selected, and a total of 40 
levels (1,3,5,…,79mm from the nosetip) are generated. 
However, a facial surface cannot always be considered to 
be perfectly symmetric with respect to the nosetip, 
especially under the deformations caused by facial 
expressions (e.g. scornful expression). This asymmetry 
may lead to an unequal contribution of the left and right 
sides to the scenario of face recognition. As a result, we 
opted to further partition the open geodesic curves into 
upper-left and upper-right again according to the location 
of the nosetip. Consequently, the similarity measure 
between two facial surfaces can be computed by 
comparing their corresponding open geodesic curves from 
the upper-left and the upper-right sub-regions respectively. 

   
 

   
 

   

FIGURE 4 Representation of a facial surface by an indexed collection 
of open geodesic curves 

We describe below the steps to extract the open 

geodesic curves at level )0( rr  on a given facial mesh. 

1) calculate the geodesic distance of all the vertices on 

the upper region of the given facial mesh (we added 5 

additional vertices on each edge of a mesh in order to 

obtain a smoother geodesic curve);  

2) extract the vertices which are at the same level r  

which results in the extraction of an open geodesic curve 

rO ;  

3) vertically partition rO  into 
L
rO  and 

R
rO  (which 

represent the open geodesic curves from the upper-left and 

upper-right respectively) with respect to the location of the 

nosetip;  

4) order the extracted curves 
L
rO  and 

R
rO  using the 

Euclidean Minimum Spanning Tree algorithm [17] (we 

choose the starting points of 
L
rO  and 

R
rO  respectively to 
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be the intersections between 
L
rO  and 

R
rO  and the 

horizontal plane which passes through the nosetip ). 

Figure 4 illustrates examples of the extracted open 

geodesic curves. 

 

3.3 SHAPES ANALYSIS OF 3D OPEN CURVE 
 

1) Geodesic distance: Recently, Srivastava et al. [18, 19] 

proposed an efficient method to analyze the shapes of 3D 

curves as a Riemannian manifold. We will adopt this work 

to compute a geodesic path between a pair of open 

geodesic curves and briefly we describe its steps below. 

We start by considering an open curve O  in 3R , 

represented by a parametric function O : 
3],[ Rba  . The 

initial point is )(aO  and the final point is )(bO , where the 

interval ],[ baU   is the domain of the curve, and O  is an 

absolutely continuous function on U . In general for an 

unit interval ]1,0[U , 3: RUO   is an 2
1L  curve. To 

analyze the shape of O , we present it mathematically 

using a Squared-Root Velocity Function (SRVF) [18], 

denoted by )(tq  according to: 

)(/)()( tOtOtq  , (1) 

where t  is a parameter used to parameterize the open 

curve ( Ut ). .  is the 3R  standard Euclidean inner 

product. The conventional metric to compare the elastic 

shape of the curves becomes then an 2
1L  metric under this 

representation. We define a set of open curves in 3R  by: 

2
2 3{ ( , ) | ( ) 1}O

U
C q L U R q t dt   , (2) 

where oC  is the set of all the unit-length open elastic 

curves in 3R . oC  is called the preshape space, because on 

which the open curves with the same shape but different 

orientation and reparameterization can be represented by 

different elements. In order to impose a Riemannian 

structure on the preshape space, we consider the tangent 

space of oC , which is defined by: 

}0,|),({)( 32  qvRULvCT o
q , (3) 

 qv,  denotes the inner product in ),( 32 RUL . 

A manifold whose tangent space has an inner product 

is a Riemannian manifold. In order to define an 

independent shape, we remove the rotation group )3(SO  

and the reparameterization group   from oC  (see [19] in 

detail). In the case of oC , the underlying space is a sphere. 

For any two points )(1 tq  and )(2 tq  in oC , a 

parameterized geodesic path connecting them is given by 
oCU : : 

))()sin()())1((sin(
)sin(

1
)( 21 tqtq 


  , (4) 

where 

))(),(arccos(),()1(),()0( 2121  tqtqtqtq   

is the length of the geodesic path, and   is used to 

parameterize the path on the space of curves. Figure 5 

shows some examples of the geodesic path on different 

facial surface. The overall geodesic distance gD  between 

the curve 1q  and 2q  is given by: 

))(),(arccos( 21
Ug dttqtqD , (5) 

2) Euclidean distance: Different surface shape 
distributions will generate different open geodesic curves. 
For a fixed level, the extracted curves from two different 
facial surfaces (of two different individuals) will be 
different and distant (when aligned in the 3D Euclidean 
space) to reflect the difference in the shape distributions of 
the two faces. This Euclidean distance can therefore be 
used as another feature for face recognition. More 
importantly, this Euclidean distance between geodesic 
curves (at the same level) extracted from two faces of two 
different individuals will be much more significant than 
the distance between the curves of the same individual 
(even under facial expressions). 

In some cases, a pair of open geodesic curves from two 

different faces can be similar in shape (level 55 in 

Figure 5), which results in a similar geodesic distance. 

Therefore, the sole use of the geodesic distance by itself is 

not sufficient for the distinction of the two faces. 

Consequently, their spatial displacement (Euclidean 

distance) can be used as an additional feature as illustrated 

in Figure 5. It shows examples of the spatial displacement 

of the open geodesic curves between faces of different 

individuals at three levels (55, 61 and 67). 
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FIGURE 5 Examples of the spatially displacement of the open geodesic 

curves from different faces at the same level  

Based on these observations, we use a curve distance 

D  (which fuses the geodesic and Euclidean distances) as 

a similarity score between two corresponding open 

geodesic curves extracted from two different faces. Given 

two open geodesic curves 1O  and 2O , the Euclidean 

distance eD  between them is computed as: 

dttOtOD
Ue   )()( 21 , (6) 

Then the curve distance D  is obtained by fusing the 

resulting geodesic distance dD  and the Euclidean 

distance eD : 

de DDD  , (7) 

 

3.4 CURVE RANKING AND WEIGHTING 

 

Given two facial meshes, according to the open Curve 

analysis algorithm described in the last section, two curve 

distances (from the upper-left and the upper-right sub-

regions) can be computed respectively, namely 1r
LD  and 

r
RD . Then, we combine these two distances by 

r
R

r
L

r DDD  , where rD  is the combined curve distance 

between a pair of open geodesic curves at level r . As a 

result, 40 level-based curve distances )40,,2,1( rDr  

between a pair of 3D facial meshes are generated. 

However, adopting all of the curves for face recognition is 

unrealistic for the following two reasons. First, some levels 

of the open geodesic curves from the semi-rigid facial 

region can also be distorted (although slightly) by facial 

expressions to a certain extent. Second, some areas exhibit 

low shape variations from one individual to another (e.g. 

the local area near the nosetip). Therefore, it is necessary 

to select curves located in areas that are less affected by 

facial expressions and which exhibit high shape variations 

in order to provide an effective distinctive representation 

for an accurate 3D face recognition system. 
An illustrative example is provided in Figure 7, where 

we compare four levels of open geodesic curves (i.e. level 
1, 3, 65 and 69) in order to show their different 
discriminating power. Five different 3D facial scans are 
used for this comparison (the first four facial scans are 
from the same individual, (a) and (b) with neutral 
expression, (c) and (d) with non-neutral expression). 

  
 

  (a)      (b)      (c)     (d)        (e)

 I     b     c     d      e     3    b      c      d     e

 a   0.052  0.013 0.183 0.205   a  0.340  0.113  0.276 0.108
 b    -     0.149 0.665 0.061   b    -    0.031  0.100 0.163
 c    -       -   0.653 0.503   c    -       -   0.090 0.204
 d    -       -     -   0.036   d    -       -      -  0.090

 65     b     c     d      e   69    b      c      d     e

 a   0.004  0.004 0.006 0.374   a  0.009  0.006  0.014 0.576
 b    -     0.005 0.003 0.314   b    -    0.010  0.009 0.572
 c    -       -   0.008 0.288   c    -       -   0.017 0.551
 d    -       -     -   0.406   d    -       -      -  0.791  

 
FIGURE 6 Face scans and distance values calculated from curves at 

level 1, 3, 65 and 69 

(e) is a scan of a different individual with neutral 

expression. The curve distance between any pair of two 

different scans at a particular level is computed following 

the algorithm in Section 3.3. These distance values are 

normalized between 0 and 1 and a smaller value means that 

such two curves are more similar. These values are 

reported in the four tables of Figure 6. The first two tables 

correspond to level 1 and 3. It is shown that the distance 

values between the curves of the same individual are, at 

odd, larger than those from different individuals. This 

clearly demonstrates that level 1 and level 3 curves are not 

reliable and should be discarded. On the contrast, the tables 

of level 65 and 69 shows that these levels can robustly 

discriminate one individual from another and they should 

therefore be retained. 

In the following, we propose a confidence-based 

algorithm to select the most reliable curves for face 

recognition. The core of this proposed algorithm is to 

assign reliability indicators (that we call confidence 

factors) to each level of facial curves. The curves with top 

confidence factors are selected and the remaining ones are 

discarded. 

Assume that we have a training set with m  faces which 

belong to n  individuals. Each scan from such training set 

is matched with all of the other facial scans using the curve 

distance at each of the r  levels ( 40,,2,1 r ). A match 

is genuine if the two scans belong to the same individual, 

otherwise it is declared as imposter. A matrix 
r

kjD ,  which 

represents the resulting curve distance between the j -th 

and the k -th facial scans at level r  is defined by: 










nkjimposter

nkjgenuine
kjDr

kj
},{

},{
}{|,  (8) 

The imposter matches in 
r

kjD ,  are denoted by )(r
iF  

where I,,1  is the number of total imposter matched 

while the genuine matches are represented by )(r
gF , 

where G,,1  is the number of total genuine matches. 

Note that, the number of imposter matches ( I ) is far 

greater than the number of the genuine ones ( G ), i.e. 
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GI  . A bootstrapping method is then used, starting 

with all the genuine matches 
r

gF  and the same number of 

randomly selected imposter matches, 
r

iF ,  (where 

 ,,1 ), denote by represents the training session 

number and )/( GIE , and )(E  represents a rounding 

operator. Next, we keep exchanging r
iF ，  and r

iF  in 

order to use all of the imposter matches. The confidence 

factor of the r -th level curve rc  is a measure of its 

discriminating power and it is evaluated by: 


 

 








 



 1
1 1

22
,,

2
,

2

))(())((

))()((1
G G r

g
r
g

r
i

r
i

rr
i

rr
gr

FFFF

GFFFF
c , (9) 

where 

),(
1

),(
1

)),()((
2

1

1

1

,,

1
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1




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
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








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








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G
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F
G

F

FF
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 (10) 

where rF  is the mean value of the matches over all the 

matches (both imposter and genuine) of the  -th session, 

while rF  is the mean value of the genuine matches (it will 

remain the same during the training process) and 
r

iF ,  is 

the mean value of the imposter matches of the  -th 

session. We can see that the confidence factor defined in 

Equation 8 is computed as the average of all the   session 

of the training. In fact it is defined as the ratio of between-

class scatter and within-class scatter (imposter and 

genuine). Generally, the ratio of the two is an indicator of 

the discriminating power, i.e. the larger it is the more 

discriminating the r -th level is. 

 

3.5 CURVE FUSION AND FACE MATCHING 

 

As described in the previous section, a total number of   

optimal open curve (with top   confidence factors 

],,,[ 21 cccc 


) are selected. Next, during the online 

testing phase, the curve distance is computed between any 

two 3D scans at each of the selected levels. This results in 

a similarity matrix ),,2,1( rSr  of size MP  

(where P  is the number of the gallery faces, and M  is the 

number of the probe faces). rS  at row   and column p  

stands for the curve distance between the gallery number 

  and the probe number p  at the r -th level. A smaller 

value of ),( pSr   means a higher similarity between the 

two matched faces. Since different levels of open curves 

provide different recognition reliability, the individual 

similarity matrix rS  is normalized according to a min-

max rule before the fusion of the selected curves. Finally, 

all the elements of the similarity matrix are scaled into a 

range between 0 and 1: 

))min(min())min(max(

)min('

rrrr

rr
r

SSSS

SS
S




 , (11) 

where )max( rS  and )min( rS  represent the minimum and 

maximum values of all the entries in the matrix rS . The 

normalized level-based similarity matrices '
rS  are then 

fused to get a combined similarity matrix S . In this work, 

we use a weighted sum rule for the fusion of all the selected 

optimal curves as follows: 

,/

,

1

'

1





















r

rr

rr r

cc

SS

 (12) 

where the fusion weight r  for the r -th curve is 
computed from the confidence factors. The final similarity 
matrix is again normalized using the min-max rule to 
normalize each column of the similarity matrix on a range 
between 0 to 1. 
 
4 Experimental results 
 
4.1 DATASET DESCRIPTION 
 

The training partition of the FRGC v2.0 dataset contains 
943 3D facial scans belonging to 273 individuals. In this 
work, the training partition is used for curve ranking and 
weighting. The validation partition of FRGC v2.0 has 4007 
frontal 3D facial scans of 466 individuals. We select the 
earliest neutral scan of ever individual to build a gallery of 
466 faces and the rest were used as probes for face 
recognition. For face verification, following the FRGC 
v2.0 protocols, each facial scan must be matched one-to 
one with the remaining facial scans (all vs. all). The most 
challenging standard protocol of FRGC v2.0 (ROC 3) was 
also tested. We also tested the performance of the proposed 
approach with another three dataset partition methods (i.e. 
neutral vs. all, neutral vs. neutral, neutral vs. nonneutral). 
Another experiment was performed to evaluate the 
robustness of the proposed approach under severe 
expression deformations (all of the facial scans with an 
open mouth as probes). 
 
4.2 OPTIMAL CURVES SELECTION 
 
In this section we aim to experimentally select the most 
discriminating facial curves using the algorithm in Section 
3.4. The confidence factors rc  of each level can be 
computed, and then a threshold is used to determine the 
selected curves. Two observations can be made. First, a 
small threshold will result in the inclusion of less relevant 
curves that will affect the discriminating power. Second, a 
high threshold will reduce the number of selected curves 
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and hence will result in an insufficient discriminating 
power. 

 

FIGURE 7 Selection of optimal facial curves. The accuracy reaches its 
peak when we select the top 25 curves 

This experiment is based on the training partition of 
FRGC v2.0. In which, the 937 facial scans belonging to 
273 individuals are both used as target set and queries, and 
each scan is matched against all the other ones. We 
represent this experiment with a selection of different top 
  curves (  varies from 1 to 40). The Verification Rates 
(VRs) at 0.1% False Acceptance Rate (FAR) are reported 
in Figure 7. We can observe that the VR sharply increases 
when only few curves are used (  less 9). It reaches its 
peak when the top 25 curves are selected. The VRs then 
drop when more facial curves are involved. On that basis, 
we opted to use the top 25 curves in the proposed 
approach. 
 
4.3 FACE RECOGNITION ON FRGC V2.0 DATASET 
 

1) FRGC v2.0 standard protocols: In order to demonstrate 
the performance of our curve ranking and weighting 
algorithm, we performed several experiments using three 
different curve fusion schemes (top 25, random 25 and last 
10). The top 25 scheme is generated as described in 
Section 4.2. The random 25 scheme means that we 
randomly select 25 curves from the 40 curves and assign 
weights to each of them according to their confidence 
factors. In the last 10 scheme, we use the 10 curves with 
the lowest confidence factors and their corresponding 
weights are also assigned to each of them. 

We first tested the all vs. all experiment, in which each 
facial scan from the validation partition is matched with 
the remaining facial scans. The Receiver Operation Curve 
(ROC) of this experiment is shown in Figure 9a, and a VR 
of 91.1% at 0.1% FAR was achieved. The VR achieved for 
the ROC3 experiment at 0.1% FAR is 93.7%, and the 
corresponding ROC curve is shown in Figure 9b. 
Figure 10 illustrate the ROC curves and the Cumulative 
Match Characteristic (CMC) curves of the proposed 
approach on the other three dataset partition methods. The 
VRs at 0.1% FAR for probes with a neutral expression and 
a nonneutral expression are 99.6% and 97.1% respectively. 
A 0.1% FAR VR for all the probes (both neutral and 
nonneutral) is 98.5%. For the identification experiment, 
we defined galleries and probes as described in Section 
4.1. 

 

  

(a) the all vs all experiment (b) the FRGC ROC 3 

experiment 

FIGURE 8 The ROC curve 

The resulting 0.1% FAR VR using top 25 curves are 

91.1% and 93.7%, respectively. The rank-1 Identification 

Rates (IDs) in the case of neutral vs. all, neutral vs. neutral, 

and neutral vs. nonneutral are 96.7%, 98.7% and 93.9%, 

respectively. 

  
(a) neutral vs. all 

  

(b) neutral vs. neutral 

  
(c) neutral vs. nonneutral 

FIGURE 9 3D face recognition results on the FRGC v2.0 dataset. 

ROC and CMC curves using different curve fusio in 
the experiment with neutral faces enrolled. The 
verification of top 25 for neutral vs. all faces is 98.5% at 
0.1% FAR. 

We observed that in all of the experiments conducted 
in this section, the top 25 scheme achieves a significantly 
greater accuracy compared to the other two curve selection 
schemes. These results clearly show that the proposed 
curve ranking and weighting algorithm is effective in 
selecting the most effective facial curves. 
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FIGURE 10 Examples of the facial scans with an open mouth. 

     

FIGURE11 Recognition results tested with the probes with an open 

mouth. The 0.1% FAR VR is 97.0% and the rank-1 ID is 90.0% 

2) Robustness to large mouth deformations: This 
Experiment was first proposed by [10] to evaluate the 
robustness of the proposed approach to large facial 
expression deformations. Since our approach is based on 
the extraction of open geodesic curves from the semi-rigid 
facial regions, it can accommodate severe facial 
expressions (e.g. with an open mouth). Figure 12 reports 
the ROC and CMC curves tested using all of the facial 
scans in the FRGC v2.0 validation partition, with an open 
mouth, as probes. Compared with the neutral vs. all 
experiments, the rank-1 ID decreased by 6.7% and the VR 
at 0.1% FAR decreased by 1.5%. The results of this 
experiment clearly show that the large facial deformations 
caused by an open mouth represent a challenge to the face 

recognition accuracy. However, when dealing with the 
open mouth probes, our proposed approach still achieved 
a VR of 97% at 0.1% FAR and a rank-1 ID of 90.0%, 
which clearly demonstrates the robustness of our proposed 
approach under large deformations caused by facial 
expressions. 
 
5 Conclusion 
 
In this work, we proposed a 3D face recognition approach 

based on the analysis of local open geodesic curves along 

with a curve ranking and weighting algorithm. We tested 

the recognition performance of the proposed system on the 

FRGC v2.0 dataset with different experimental setups. Our 

experimental results demonstrated the superior 

performance of the proposed approach: 99.6% and 97.1% 

VRs at 0.1% FAR for probes with a neutral and a non-

neutral expression respectively. The rank-1 IDs under the 

same conditions were 98.7% and 93.9%. Compared with 

existing works which were based on the analysis of closed 

facial curves, this proposed approach is able to deal with 

large deformations caused by facial expressions. We also 

achieved a superior result when considering all the probes 

with an open mouth on FRGC v2.0 dataset. 
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